A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra

نویسندگان

  • Wensheng Cai
  • Yankun Li
  • Xueguang Shao
چکیده

Variable (or wavelength) selection plays an important role in the quantitative analysis of near-infrared (NIR) spectra. A modified method of uninformative variable elimination (UVE) was proposed for variable selection in NIR spectral modeling based on the principle of Monte Carlo (MC) and UVE. The method builds a large number of models with randomly selected calibration samples at first, and then each variable is evaluated with a stability of the corresponding coefficients in these models. Variables with poor stability are known as uninformative variable and eliminated. The performance of the proposed method is compared with UVE-PLS and conventional PLS for modeling the NIR data sets of tobacco samples. Results show that the proposed method is able to select important wavelengths from the NIR spectra, and makes the prediction more robust and accurate in quantitative analysis. Furthermore, if wavelet compression is combined with the method, more parsimonious and efficient model can be obtained. © 2007 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uninformative Biological Variability Elimination in Apple Soluble Solids Content Inspection by Using Fourier Transform Near-Infrared Spectroscopy Combined with Multivariate Analysis and Wavelength Selection Algorithm

Uninformative biological variability elimination methods were studied in the near-infrared calibration model for predicting the soluble solids content of apples. Four different preprocessing methods, namely, Savitzky-Golay smoothing, multiplicative scatter correction, standard normal variate, and mean normalization, as well as their combinations were conducted on raw Fourier transform near-infr...

متن کامل

Determination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares

The potential of Near Infrared Reflectance Spectroscopy (NIRS) as a fast method to predict the Crude Protein (CP) and Moisture (M) content in fishmeal by scanning spectra between 1000 and 2500 nm using multivariate regression technique based on Partial Least Squares (PLS) was evaluated. The coefficient of determination in calibration (R2C) and Standard Error of Calibra...

متن کامل

Elimination of the uninformative calibration sample subset in the modified UVE(Uninformative Variable Elimination)-PLS (Partial Least Squares) method.

In order to increase the predictive ability of the PLS (Partial Least Squares) model, we have developed a new algorithm, by which uninformative samples which cannot contribute to the model very much are eliminated from a calibration data set. In the proposed algorithm, uninformative wavelength (or independent) variables are eliminated at the first stage by using the modified UVE (Uninformative ...

متن کامل

A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration.

Nowadays, with a high dimensionality of dataset, it faces a great challenge in the creation of effective methods which can select an optimal variables subset. In this study, a strategy that considers the possible interaction effect among variables through random combinations was proposed, called iteratively retaining informative variables (IRIV). Moreover, the variables are classified into four...

متن کامل

Variable reduction algorithm for atomic emission spectra: application to multivariate calibration and quantitative analysis of industrial samples

A variable selection procedure has been developed and used to reduce the number of wavelength data points necessary to formulate a predictive multivariate model for Pt, Pd and Rh using full atomic emission spectra (5684 wavelength data points per spectrum) obtained using a Segmented-Array Charge-Coupled Device Detector (SCCD) for inductively coupled plasma atomic emission spectrometry (ICP-AES)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008